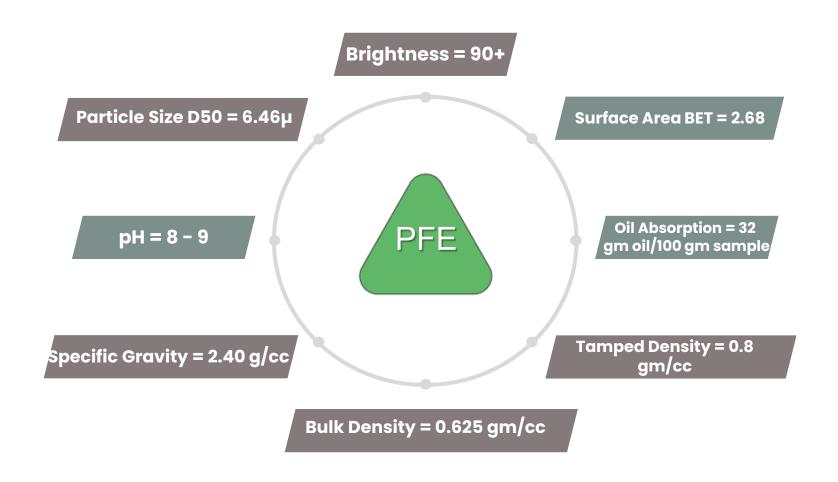
PozzSource Functional Extenders

PozzSource Functional Extenders (PFE) Introduction

- PozzSource Industrial applications of fine powdered volcanic ash (SiO2)
 - First applications focused on the Concrete Industry
 - o Products make concrete better, greener and less expensive
 - Currently offering PFE to the Coatings Industry
 - PFE are competitive as
 - o PozzSource Hide TiO₂ replacement
 - PozzSource Tuff Abrasion and scuff resistance
 - PozzSource Silicate Economic extender
- PozzSource Background
 - PozzSource develops products and technology for industrial applications
 - Founded in 2015
 - Specialized material sources include naturally occurring volcanic ash
 - Developed mineral sources in California and Utah
 - Built processing facility near Salt Lake City, Utah in 2021

Introduction	2
Coatings Market Segments	3
Material Features	4-22
Contact Information	23

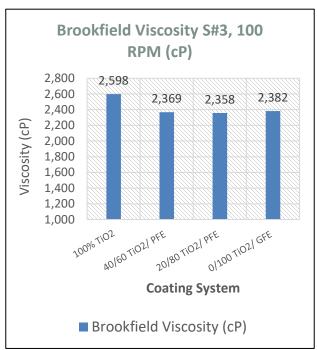


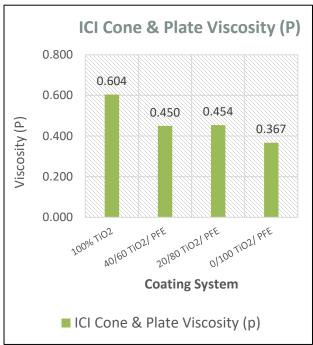
Coatings Market Segments

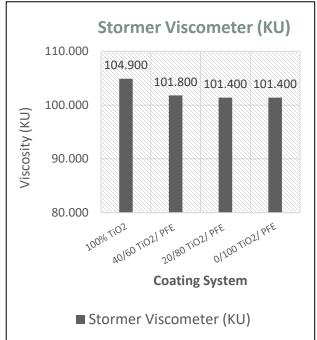
- PozzSource Functional Extenders will provide value in several coatings areas
 - PozzSource Hide Optical TiO2 replacement
 - Replaces up to 60% of TiO2 (by volume)
 - Titanium Oxide is one of the most expensive inorganic pigments, replacement ultimately saves money, making the final product more economical
 - o PozzSource Tuff **Abrasion and scuff resistance** components
 - Geologic mineral is literally "tuff"
 - Toughness as proven coatings compound improves performance
 - PozzSource Silicate Functional Extender
 - Provides excellent strength to the existing paint formulations.
 - Improves the dry film characteristics while having no adverse effects on existing properties

PHYSIOCHEMICAL PROPERTIES

Introduction	2
Coatings Market Segments	3
Material Features	4-22

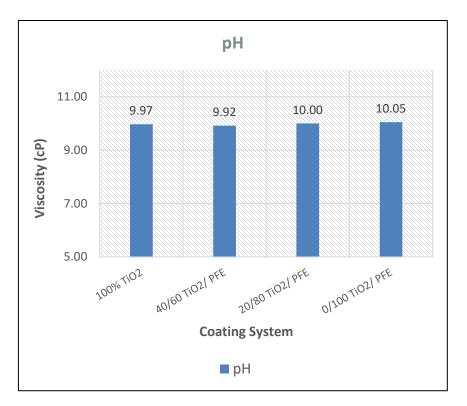

Benefits of Using PozzSource Functional Extenders

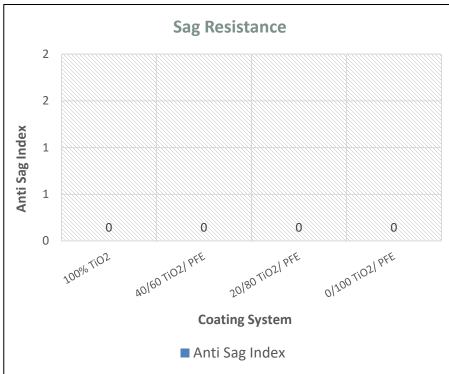

- Wet Properties
 - No adverse effect on the wet properties such as:
 - Viscosity (low, medium & high shear)
 - o pH
 - Sag resistance
 - Heat Aged stability
- Optical Properties
 - Up to 60% Replacement of TiO2 (Volume basis) has no adverse impact on Hiding Power / Opacity of the finished paint
- > Dry Film Properties
 - Improvement in physical, chemical and mechanical properties include
 - Taber Abrasion
 - Wet Scrub Resistance
 - Dry Scrub / Burnish Resistance
 - Spot Resistance House Hold Chemicals



Wet Properties

- Viscosity Low Shear , Medium Shear And High Shear
 - Incorporation of PFE into an existing paint formulation has no significant changes on the viscosity of the finished paint
 - o Tests performed with 60%, 80% and 100% TiO2 replacement with PFE **PozzSource Hide** Product

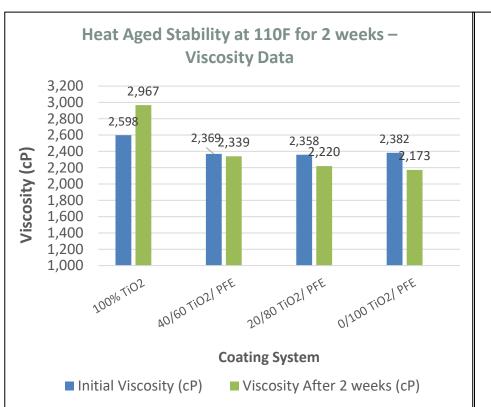


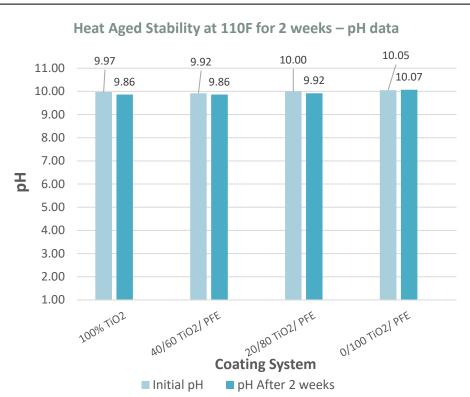


Wet Properties

> pH & Sag Resistance

- Incorporation of PFE into an existing paint formulation has no significant changes on the pH or the sag resistance of the final product.
- o Tests performed with 60%, 80% and 100% TiO2 replacement with PFE **PozzSource Hide** Product





Wet Properties

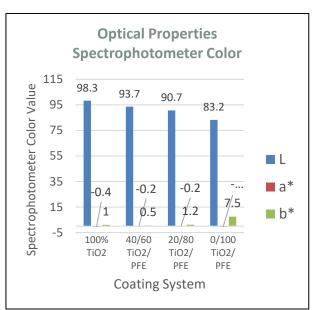
HEAT AGED STABILITY

- PFE formulation shows good heat aged stability at 110° F over 2 weeks with no phase separation,
 pigment flooding, or floating, syneresis
- All the variations showed soft settling were easily re-dispersible
- o Tests performed with 60%, 80% and 100% TiO2 replacement with PFE **PozzSource Hide** Product

INCLUDED IN THIS GUIDE	
Introduction	2
Coatings Market Segments	3
Material Features	4-22
Contact Information	23

Optical Properties

- ➤ Titanium dioxide (TiO₂) is the par excellence in the industry and the world's best-selling inorganic pigment. However, titanium is a product whose high price is subject to large variations due to product availability.
- These price increases affect the competitiveness of finished products, so the search for an alternative to titanium dioxide has generated a variety of possibilities to optimize its use.
- ➤ PFE's excellent optical properties provide both technical and economic advantages in the substitution of TiO₂, which includes up to 60% replacement of TiO₂ for non-optimized formulations on weight basis.

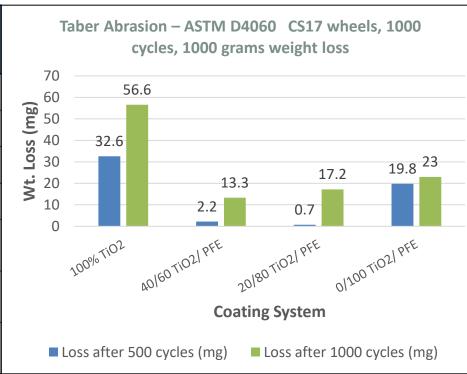


Introduction	2
Coatings Market Segments	3
Material Features	4-22
Contact Information	



Optical Properties

- Opacity, Spectrophotometer Color, Specular Gloss
 - Formulation containing 60% PFE have similar Opacity/Hiding and color characteristics of the formulation containing 100% TiO₂

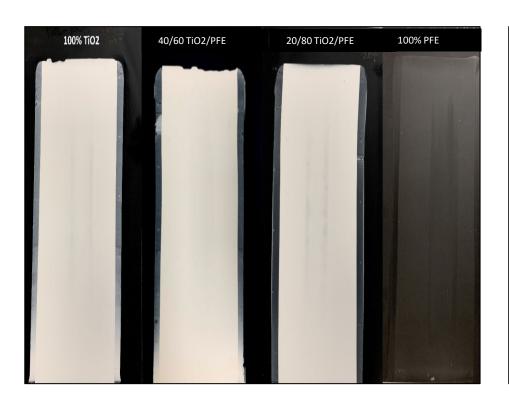


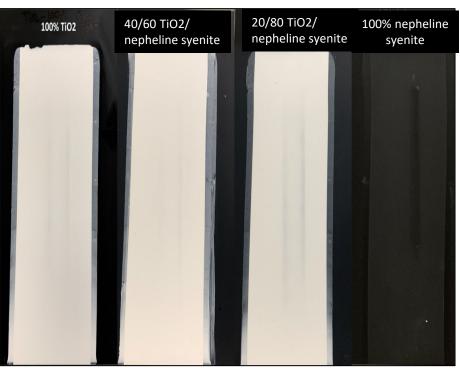
INCLUDED IN THIS GUIDE	
Introduction	2
Coatings Market Segments	3
Material Features	4-22
Contact Information	23

- > Improved Taber Abrasion
 - o Formulation containing PFE have significant improvement in the Taber abrasion and lower weight loss after 1,000 cycles, compared to those containing TiO2.


Formulations	Panel initial wt. (g)	Panel wt. after 500 cycles (g)	Panel wt. after 1000 cycles (g)	wt. loss after 500 cycles (mg)	loss after 1000 cycles (mg)
100% TiO2	72.6671	72.6345	72.6105	32.6	56.6
40/60 TiO2/ PFE	72.1887	72.1865	72.1754	2.2	13.3
20/80 TiO2/ PFE	72.0662	72.0655	72.049	0.7	17.2
0/100 TiO2/ PFE	68.33	68.3102	68.307	19.8	23
40/60 TiO2/nepheline syenite	70.3546	70.3525	70.3391	2.1	15.5
20/80 TiO2/nepheline syenite	65.8104	65.8071	65.7958	3.3	14.6
0/100 TiO2/nepheline syenite	69.9737	69.9699	69.9627	3.8	11

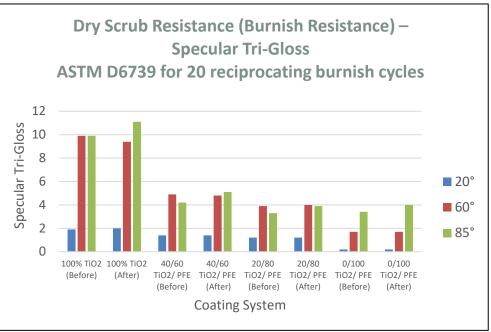
INCLUDED IN THIS GUIDE	
Introduction	2
Coatings Market Segments	3
Material Features	4-22
Contact Information	23


- ➤ Wet Scrub Resistance TiO2 vs PFE formulation
 - o 40/60 ratio of TiO2/PFE has better wet scrub resistance compared to variation with 100% TiO2

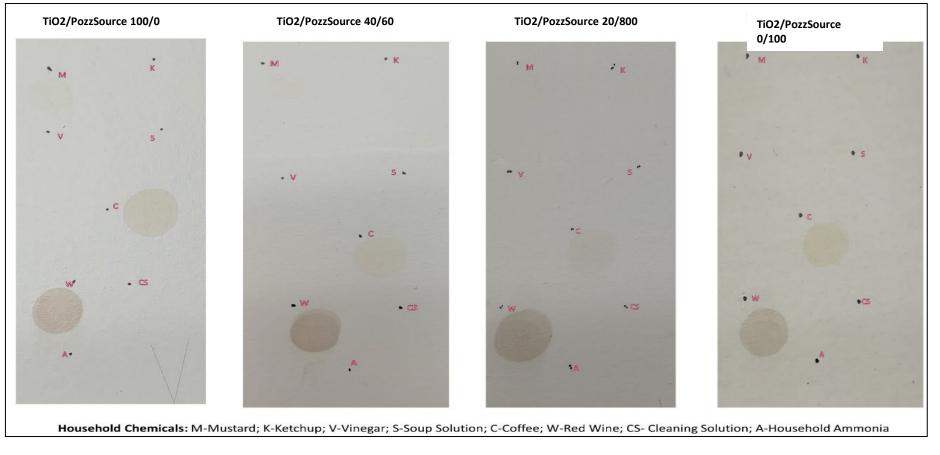


Introduction	2
Coatings Market Segments	3
Material Features	4-22

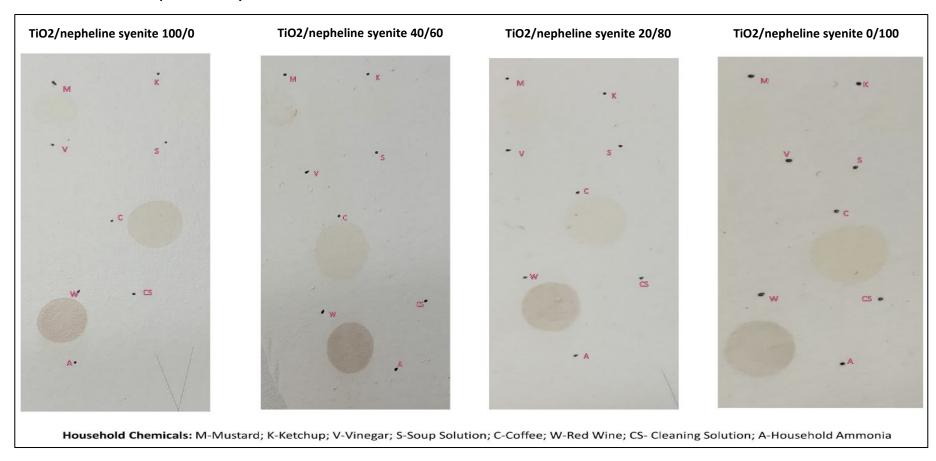
- ➤ Wet Scrub Resistance TiO2 vs PFE vs nepheline syenite
 - 40/60 ratio of TiO2/PFE has better wet scrub resistance compared to variations containing 100% TiO2 and nepheline syenite.



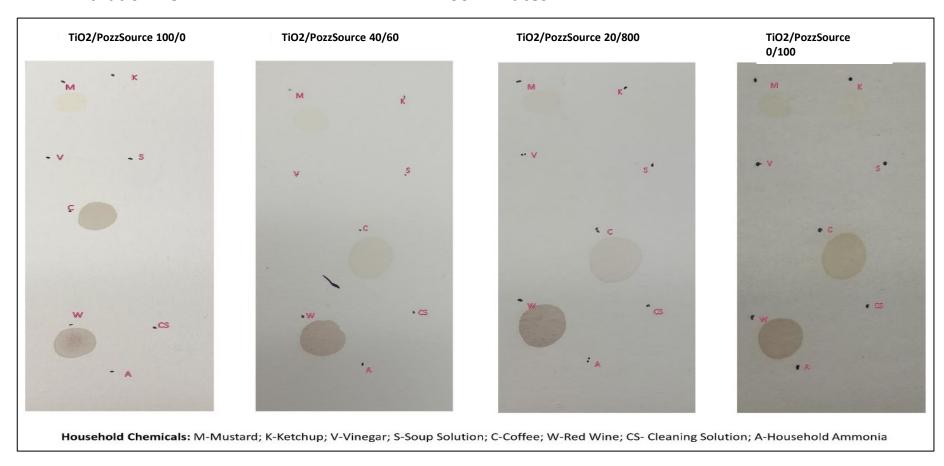
INCLUDED IN THIS GUIDE	
Introduction	2
Coatings Market Segments	3
Material Features	4-22
Contact Information	23


- Dry Scrub // Burnish Resistance Specular Tri Gloss
 - 100 TiO2, 40/60 and 20/80 ratio of TiO2/PFE has better burnish resistance compared to 40/60 and 20/80 ratio of TiO2/ nepheline syenite

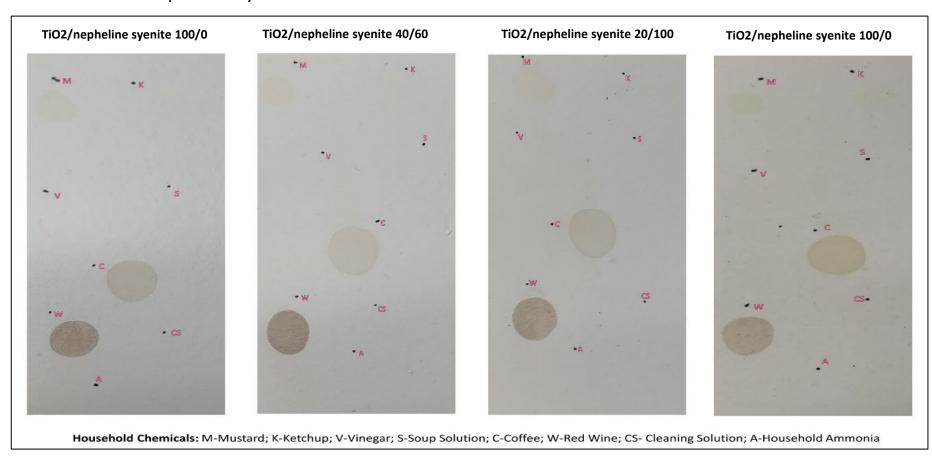
Dry Film Formulations Thickness (Mil)		Initial Tri-Gloss			Tri-Gloss (After burnish resistance test)			85° % gloss change
	(IVIII)	20°	60°	85°	20°	60°	85°	
TiO2/PFE								
100/0		1.9	9.9	9.9	2	9.4	11.1	12.12
40/60		1.4	4.9	4.2	1.4	4.8	5.1	21.43
20/80	2	1.2	3.9	3.3	1.2	4	3.9	18.18
0/100		0.2	1.7	3.4	0.2	1.7	4	17.65
	•		•				•	
TiO2/nepheline syenite								
40/60		1.5	4.7	4.3	1.5	4.8	5.3	23.26
20/80	2	1.3	3.9	4.6	1.3	4.1	5.7	23.91
0/100		0.2	1.7	3.2	0.2	1.7	3.7	15.63


- > Stain Resistance Household Chemicals
 - There's no adverse effect on resistance to household chemicals or spot test that is visible for PFE vs that of TiO2.

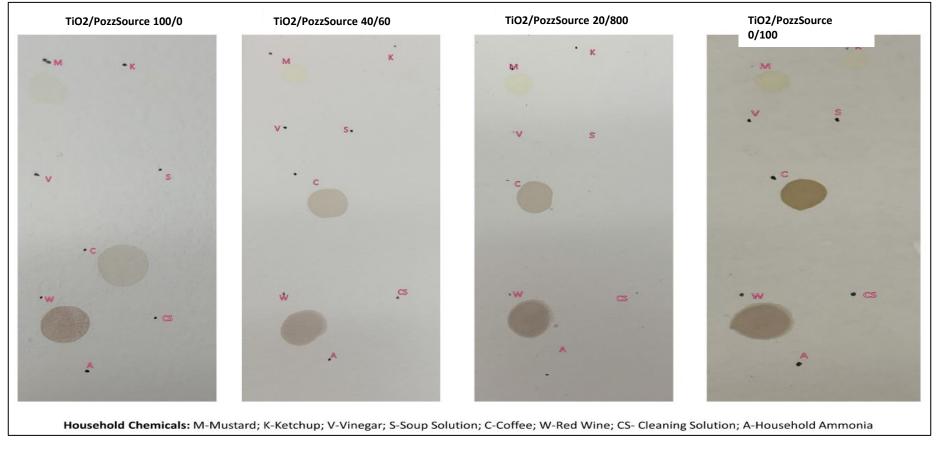
Introduction	2
Coatings Market Segments	3
Material Features	4-22



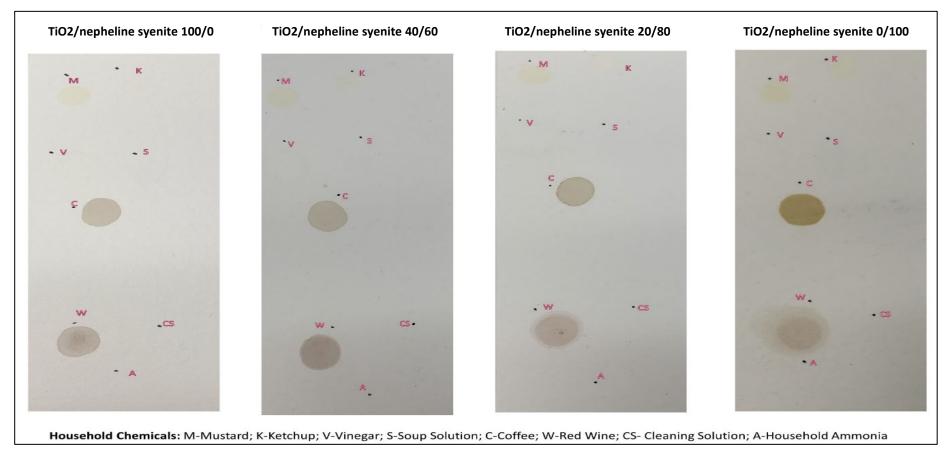
- > Stain Resistance Household Chemicals
 - There's no adverse effect on resistance to household chemicals or spot test that is visible for PFE vs that of nepheline syenite formulation.
 15 Minutes



- > Stain Resistance Household Chemicals
 - There's no adverse effect on resistance to household chemicals or spot test that is visible for PFE vs that of TiO2.


- Stain Resistance Household Chemicals
 - There's no adverse effect on resistance to household chemicals or spot test that is visible for PFE vs that of nepheline syenite formulation.
 60 Minutes

- > Stain Resistance Household Chemicals
 - There's no adverse effect on resistance to household chemicals or spot test that is visible for PFE vs that of TiO2.


 20 Hours

INCLUDED IN THIS GUIDE	
Introduction	2
Coatings Market Segments	3
Material Features	4-22
Contact Information	23

- Stain Resistance Household Chemicals
 - There's no adverse effect on resistance to household chemicals or spot test that is visible for PFE vs that of nepheline syenite formulation.
 20 Hours

INCLUDED IN THIS GUIDE								
Introduction	2							
Coatings Market Segments	3							
Material Features	4-22							
Contact Information	23							

- ➤ QUV Accelerated Weather Resistance Spectrophotometric Color
 - \circ No adverse effect on the color, gloss or weather resistance for PFE vs that of ${\rm TiO_2}$ or nepheline syenite formulation
 - The test was done in accordance with ASTM D4329 for 500 hours

Formulations				metric Colc				QUV weather resistance – Spectrophotometer Color Value			
	L*	tial Read a*	b*	L*	a*	b*	ΔΕ	97 97 87 98 97 98 99 91.6 85.8 81.6			
100% TiO2	98	-0.8	0.5	97	-0.9	-0.5	1.4	<u>8</u> 77			
40/60 TiO2/ PFE	93.4	-0.6	0.2	93.5	-0.6	0.4	0.2		■ L		
20/80 TiO2/ PFE	90.7	-0.4	1.2	91.6	-0.8	1.0	1.0	0.0 0.6 0.4	■a*		
0/100 TiO2/ PFE	85.8	-0.8	2.8	81.6	-0.6	3.4	4.2	b 17	■ b*		
40/60 TiO2/nepheline syenite	96.2	-0.8	0.1	95.8	-1	0.2	0.5	100% 1102 100% 1102 40/60 1102/40/60 1102/20/80 1102/20/80 1102/0/100 1102/0/100 1102/			
20/80 TiO2/nepheline syenite	95.2	-1	0.3	94.4	-1	-0.5	1.1	(Initial) (After GFE GFE GFE GFE GFE 500Hrs) (Initial) (After (Initial) (After 500Hrs) 500Hrs) 500Hrs)			
0/100 TiO2/nepheline syenite	92.2	-1.3	1.3	92.8	-1.3	0.1	1.3	Coating System			

- ➤ QUV Accelerated Weather Resistance Specular Tri Gloss
 - No significant loss in gloss after 500 Hours of QUV–A Exposure.
 - o The test was done in accordance with ASTM D4329 for 500 hour.

			Gloss re	eadings			QUV weather resistance – Specular Tri-Gloss			
Formulations	In	itial Readi	ng	After 500 Hours			11 -9.2 10 10 8.48.5			
	20°	60°	85°	20°	60°	85°	O 7			
100% TiO2	1.9	9.2	10	1.8	8.4	8.5	5 7 1 1 1 1 1 1 1 1 1 1			
40/60 TiO2/ PFE	1.4	4.6	3.8	1.4	4.3	3.4	5 - 4.6 _{3.8} 4.3 3.9 - 3.4 3.1 3.7 3.1 - 2.8 2.3 2.6 - 2.1	20° 1 60°		
20/80 TiO2/ PFE	1.3	3.9	3.1	1.3	3.7	2.8				
0/100 TiO2/ PFE	1.1	3.1	2.3	1	2.6	2.1		■ 85°		
40/60 TiO2/nepheline syenite	1.5	4.8	4.1	1.4	4.2	3.6	100% TiO2 100% TiO2 40/60 40/60 20/80 20/80 0/100 0/100 (Initial) (After TiO2/ PFE TIO			
20/80 TiO2/nepheline syenite	1.4	4	3.2	1.3	3.6	2.7	500Hrs) (Initial) (After (Initial) (After (Initial) (After 500Hrs) 500Hrs)			
0/100 TiO2/nepheline syenite	1.3	3.2	2.5	1.3	2.8	2.2	Coating System			

Contact Information

- ➤ For more information about how PozzSource Functional Extenders can help improve the performance of coatings formulations, contact your PozzSource representative
 - o Jim Bowen Director of Business Development/Founder
 - o Mobile: 305-509-1615
 - Email: <u>jbowen@PozzSource.com</u>
 - o Ron Lewarchik President, Chemical Dynamics LLC
 - o Office: +1 (734) 233-3084
 - o Email: rlewarchik@chemicaldynamics.net

PozzSource Corporate Office

Address: 2702 Denali St. #100

Anchorage, AK 99506

Email: info@PozzSource.com

R&D Lab

Address: 320 Western Road, Suite 1

Reno NV 89506

Contact Information	23
Material Features	4-22
Coatings Market Segments	3
Introduction	2

